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A fully coupled implicit method has been developed for solving the viscous full
multi-fluid equations, which incorporate transport and generation of mass and mo-
mentum for each component present in a system. This work presents stability analy-
sis and representative computational results of this algorithm. The stability analyses
demonstrate the performance of several iterative schemes applied to the solution of
the linearized block system which arises in the fully implicit formulation. These
include block Jacobi and symmetric block Gauss–Siedel schemes using two forms
of relaxation. A hierarchy of increasing physical complexity is pursued, starting
with one-dimensional, two-fluid systems with minimum inter-field dynamic cou-
pling and no mass transfer. These analyses are then extended to systems employing
physically important inter-field forces (drag, dispersion, virtual mass). The effects
of mass transfer, multiple fields (i.e., more than 2), and multiple dimensions are
considered. A two-fluid Navier–Stokes code has been developed, guided by the sta-
bility analyses. One-dimensional and two-dimensional results generated with this
code are presented, which verify the validity of the stability analyses presented for
the coupled scheme, and the effectiveness of the method for flows of engineering
relevance. c© 1999 Academic Press

INTRODUCTION

Multi-phase flows which require full multi-fluid modeling arise in a wide class of engi-
neering problems, where non-equilibrium dynamics and thermodynamics of the interfaces
between constituents play important roles in the evolution of the mean flow. Examples in-
clude cyclone separators, two-phase flow in jets and curved ducts, and boiling flow in heat
exchangers. Such flows contrast with multi-phase flows where interfacial dynamics and
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thermodynamics occur on such small scales that mixture momentum and energy equations
can be employed. The present work focuses on flows where such homogeneous mixture
approximations are not valid and full multi-fluid modeling is appropriate. In this approach,
separate equations for the transport and generation of mass, momentum, and energy for
each constituent are solved.

In the past two decades, two principal classes of algorithms have been developed for
the solution of full multi-fluid systems. The first of these is derived from the implicit-
continuous-fluid-Eulerian (ICE) method and involves a coupled or semi-coupled time-
marching solution procedure [1–3]. These methods have found wide use in transient appli-
cations in the area of nuclear reactor safety. The second class of methods is the multi-field
extension [5–7] of pressure-based schemes, widely used for single-phase applications [8].
These methods are segregated schemes that employ an iterative solution strategy along with
under-relaxation. They have also enjoyed widespread use within the multi-fluid commu-
nity.

In spite of their relative successes, both classes of schemes encounter some specific nu-
merical difficulties in multi-fluid computations. It is well recognized that the single-pressure
full multi-fluid time-marching system is non-hyperbolic in a strict sense because the eigen-
values of the inviscid differential system are complex for system parameters (e.g., volume
fraction, slip) of practical interest [3, for example]. This raises issues regarding the stability
of transient multi-fluid methods as well as the formulation of characteristic-based upwind
discretization schemes. Pressure-based methods, on the other hand, are not based upon the
unsteady system and, therefore, do not appear to suffer from the same problems. (It should
be pointed out that this has been the source of some controversy within the research commu-
nity.) However, the segregated procedures conventionally used in the pressure-based meth-
ods cause stability and robustness problems because the inter-phasic coupling terms cannot
be treated in fully implicit fashion. This issue can be especially troubling when interfacial
force models are non-linear in form and/or large in magnitude [7, for example]. Consistent
with these observations, the overall objective of this work has been to develop a class of
implicit schemes for full multi-fluid computations, which are both well posed and fully
coupled.

The focus of this work is on obtaining steady-state solutions of full multi-fluid sys-
tems. Accordingly, the time-marching or relaxation procedure used serves merely as an
iterative device to drive the solution errors to zero. Over the past decade, preconditioned
time-marching methods have become widely researched and used [9, for example]. These
methods introduce artificial time derivatives which control the system eigenvalues and
thereby optimize stability and convergence properties of the scheme. In the context of
steady-state multi-fluid computations, the preconditioning technique introduces the inter-
esting possibility of selecting the time derivatives such that the system remains hyperbolic
and, therefore, well posed for time marching. The examination of this promising avenue is
one of the objectives of the paper.

The paper is organized as follows. The theoretical development begins with the steady-
state equations and the discretization framework previously developed in conjunction with
the pressure-based, multi-fluid algorithm. We introduce two under-relaxation procedures,
the first based on the individual scalar transport equations and the second based on the fully
coupled vector system. It is shown that the two under-relaxation schemes correspond to
preconditioning systems, which we refer to as scalar and block preconditioning systems,
respectively.
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A hierarchy of analytical and computational procedures, including von Neumann stability
analysis, matrix stability analysis, and sample computations (using a full non-linear CFD
code based on the method), are utilized to probe the stability and convergence properties
of the implicit scheme. The results of the von Neumann and matrix stability theories are
restricted to the linearized version of the multi-fluid system. The von Neumann stability
analysis further assumes the use of periodic boundary conditions. In spite of the limitations,
the stability analyses provide rich insight into algorithmic performance. Indeed, these anal-
yses serve as the guide for the selection of the optimal preconditioning system and solution
procedure. Stability analyses are used to investigate the baseline performance of several
candidate schemes. The effects of iterative method, preconditioning strategy, linearization
strategy, and Reynolds number are investigated, and comparison to single-phase perfor-
mance is presented. A hierarchy of increasing physical complexity is then pursued, starting
with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and
no mass transfer. These analyses are then extended to systems employing physically impor-
tant inter-field forces (drag, dispersion, virtual mass). The effects of mass transfer, multiple
fields (i.e., more than 2), and multiple dimensions are then considered.

Based upon the findings of these stability studies, a fully non-linear, multi-dimensional,
multi-field code, COMAC, has been developed. Representative computational results ob-
tained with COMAC which verify the stability findings and demonstrate the capabilites
of the scheme under realistic operating conditions and practical boundary conditions are
presented. In the interests of clarity, all the analyses and computations are performed for
the one-dimensional system first, followed by more practical multi-dimensional results.

THEORETICAL FORMULATION

Governing Equations

In full multi-fluid formulations, independent equations are employed for the transport/
generation of mass, momentum, and energy for each field present in a system. The ensemble
averaged governing equations for steady-state, one-dimensional two-fluid flow without heat
and mass transfer can be written as [10]

∂

∂x
(ρ1α1u1u1) = −α1

∂p

∂x
+ ∂

∂x

(
α1µ1

∂u1

∂x

)
∂

∂x
(ρ2α2u2u2) = −α2

∂p

∂x
+ ∂

∂x

(
α2µ2

∂u2

∂x

)
(1)

∂

∂x
(ρ1α1u1) = 0

∂

∂x
(ρ2α2u2) = 0

α1+ α2 = 1,

where a conventional single-pressure approximation has been invoked. In what follows,
each field’s density and viscosity are assumed constant. For convenience, a factor of 4/3 is
assumed embedded within the molecular viscosities.
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As written, Eq. (1) employs no dynamic coupling (e.g., drag) between fields 1 and 2,
other than a common pressure. This model system serves as a platform for developing the
implicit method presented below. The influence of dynamic coupling terms due to drag,
virtual mass, and dispersion will be introduced. Also, the effects of mass transfer, alternate
linearizations, multiple dimensions, and multiple fields on stability are investigated.

Discretization

Equation (1) is written in vector form as

R(Q) = ∂E

∂x
+ B

∂Q

∂x
+ H = 0

Q ≡ (u1, u2, α1, α2, p)T, H ≡ (0, 0, 0, 0, α1+ α2− 1)T

E ≡



ρ1α1u1u1− α1µ1
∂u1

∂x

ρ2α2u2u2− α2µ2
∂u2

∂x
ρ1α1u1

ρ2α2u2

0


, B ≡


0 0 0 0 α1

0 0 0 0 α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
(2)

Several finite volume spatial discretization strategies can be applied. For the present work,
second-order central differencing is selected for pressure gradient and viscous terms. First-
order upwinding is used in conjunction with a conventional pressure-weighted interpolation
scheme [11] for the convection terms in the momentum and continuity equations. Higher
order accuracy can be employed straightforwardly, though for the purposes of the basic
analyses presented in this paper only the stated discretization will be considered. Without
loss of generality in the development which follows,1x is taken as constant, andu is
assumed positive.

Referring to Fig. 1, the discretization of Eq. (2) can be summarized as

∂

∂x
(αuu)→ (E−x/2α)e(Rxu)e(E−x/2u)e− (E−x/2α)w(Rxu)w(E−x/2u)w

∂

∂x

(
αµ

∂u

∂x

)
→ µ(α)e(δxu)e− µ(α)w(δxu)w

α
∂p

∂x
→ αP(δ2x p)P

∂

∂x
(αu)→ (E−x/2α)e(Rxu)e− (E−x/2α)w(Rxu)w,

(3)

FIG. 1. 1-D control volumes on a Cartesian grid.
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where the operators used in Eqs. (3) are defined as

(E−x/2φ)e ≡ φP, (φ)e ≡ (φP+ φE)/2

(δxφ)e ≡ (φE− φP)/1x, (δ2xφ)P ≡ (φE− φW)/21x

(Rxu)e ≡ (u)e+
(

1

ρu/1x + 2µ/1x2

)
[(δ2x p)e− (δx p)e].

(4)

In Eq. (4), the second term on the RHS of theRx operator corresponds to the pressure-
weighted interpolation [11].

Implicit Solution Procedure

Applying an exact Newton linearization to Eq. (2) yields

R′(Q)1Q = −R(Q), (5)

where

R′(Q) = ∂

∂x
A • + ∂

∂Q

(
B
∂Q

∂x

)
+ C

and Jacobians

A ≡ ∂E

∂Q
,

∂

∂Q

(
B
∂Q

∂x

)
, C ≡ ∂H

∂Q

are given in the Appendix.
The spatial discretization, given in Eqs. (3), is applied consistently on the RHS and LHS

of Eq. (5). The fully implicit discrete linearized system becomes

PQn+1 = S(Qn), (6)

where, for notational simplicity in what follows, a non-1 formulation is adopted. In Eq. (6),
the block-banded matrixP (pentadiagonal with 5× 5 blocks for 1-D, two-field) corre-
sponds to the discretization ofR′(Qn), and S(Qn) corresponds to the discretization of
−R(Qn)+R′(Qn) • Qn. For completeness, vectorsPQn+1 andS(Qn) are given in the Ap-
pendix. The Newton scheme serves as a useful platform for investigating the effectiveness
of solution strategies for solving the discrete system.

General Iterative Solution

A class of iterative schemes for the solution of Eq. (6) can be defined from

M Qn+1,k+1 = NQn+1,k + S(Qn), (7)

where

P≡ M − N (8)

represents the iterative splitting adopted.
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To facilitate discussion of the preconditioning and iterative strategies developed below,
P can be decomposed as

P= D+ (L + U), (9)

whereD is block diagonal, whileL andU are strictly lower and upper block triangular. A
decomposition ofD is also introduced as

D ≡ Dd+ Do+ Dc, (10)

where, for the linearization and discretization invoked, block diagonal matrixD is given in
the Appendix and has the structure

D = diag




X X X

X X X

X X X

X X X

1 1

,


X X X

X X X

X X X

X X X

1 1

, . . . ,


X X X

X X X

X X X

X X X

1 1




.

(11)

Dd andDo correspond to diagonal and off-diagonal terms in rows 1–4 in each block ofD. Dc

contains only the row 5 entries corresponding to the compatibility conditionα1+α2= 1.

Time-Marching and Relaxation Formulations

Iterative procedures defined by Eq. (7) in general require some form of pseudo-time
stepping or relaxation, to obtain stability and/or optimum damping. For example, the re-
laxation formulation conventionally used in segregated pressure-based schemes [8] may be
expressed in vector form as(

M + Dd

(
(1− ω)
ω

))
Qk+1 = NQk + S+ Dd

(1− ω)
ω

Qk. (12)

Equation (12) can be written as an equivalent time-marching scheme,

0S
∂Q

∂t
+M Qk+1 = NQk + S, (13)

by making the identification

0S = Dd
(1− ω)
ω

1t. (14)

Alternatively, a block-relaxation procedure may be defined:(
M + D

(
(1− ω)
ω

))
Qk+1 = NQk + S+ D

(1− ω)
ω

Qk. (15)

Equation (15) can be written as an equivalent time-marching scheme with block Jacobi
preconditioning,

0B
∂Q

∂t
+M Qk+1 = NQk + S, (16)
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by making the identification

0B = D
(1− ω)
ω

1t. (17)

In practice, the algebraic compatibility condition
∑
αl = 1 is enforced exactly. Accord-

ingly, D is replaced byD−Dc in Eqs. (15) and (17).
Equations (12)–(17) illustrate that relaxation formulations are closely related to time-

marching solution methods. However, the form of the time derivatives in Eqs. (13) and (16)
is different from the standard unsteady time derivatives used in conventional time-marching
procedures [1–3]. Here, the time derivatives are “preconditioned” by the matrices0S and
0B. Accordingly, we refer to0S in Eq. (13) as the scalar preconditioning (or SP) matrix
and to0B in Eq. (16) as the block preconditioning (or BP) matrix. The time-marching
formulation is presented only for reasons of clarity. In the authors’ flow solver, the time
step is not directly specified; rather, the relaxation factorω is specified and Eqs. (12) and
(15) are implemented.

Block Jacobi Scheme

For a block Jacobi iteration,

MBJ ≡ D, NBJ ≡ −(L + U). (18)

When used with block Jacobi preconditioning, this scheme (hereafter designated BP-BJ)
is written

0B
∂Q

∂t
+ DQk+1 = −(L + U)Qk + S. (19)

A block Jacobi iteration with scalar relaxation (hereafter designated the SP-BJ scheme)
is written

0S
∂Q

∂t
+ DQk+1 = −(L + U)Qk + S. (20)

Block Gauss–Siedel Scheme

For a forward sweep block Gauss–Siedel scheme,

MFBGS≡ D+ L , NFBGS≡ −U. (21)

Analogous to Eqs. (19) and (20), BP-BFGS and SP-BFGS schemes are defined:

0B
∂Q

∂t
+ (D+ L)Qk+1 = −UQk + S (22)

0S
∂Q

∂t
+ (D+ L)Qk+1 = −UQk + S. (23)

In practice the forward sweep block Gauss–Siedel schemes are used in conjunction with
symmetric backward sweeps, defined analogously to Eqs. (22) and (23). These symmetric
schemes are designated BP-BSGS and SP-BSGS, below.
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STABILITY ANALYSIS

Vector von Neumann analysis is employed to investigate the stability characteristics of
the four preconditioned systems defined by Eqs. (19)–(20) and (22)–(23). These can be
written in the common form

G1Qk+1 = G2Qk + S. (24)

The iteration matrix associated with the general scheme defined by Eq. (24) is

G ≡ G−1
1 G2. (25)

The stability of the iterative schemes is assessed below by examining the eigenvalues of
the Fourier symbol,̂G= Ĝ−1

1 Ĝ2, of their iteration matrix,G.
For a non-preconditioned, fully implicit scheme,Ĝ= P̂, whereP̂ is the Fourier symbol

of the matrix operatorP. For the schemes considered,Ĝ1 andĜ2 can be easily constructed
by splitting P̂ appropriately (i.e.,̂P≡ M̂ − N̂) and applying the preconditioning operators
used.

There are eight physical parameters which appear in the system: cell Reynolds num-
bers associated with each phase (Re1, Re2), density ratio(ρ1/ρ2), velocity ratio(u1/u2),
field 1 volume fraction(α1), and pressure and velocity gradient terms arising from the
Newton linearization(δxu1, δ2x p). In what follows, stability characteristics are studied for
the proposed iterative procedures applied to Eq. (6), for a range of physical parameters of
interest.

Block Jacobi Scheme

The Fourier iteration matrix associated with the BP-BJ scheme defined in Eq. (19) is
ĜBP-BJ= M̂−1

BP-BJN̂BP-BJ. For this scheme, the stability characteristics given in Fig. 2 are
obtained. Here, the spectral radius of the amplification matrix for the BP-BJ scheme is
plotted vs non-dimensional wave number.

The BP-BJ scheme is clearly conditionally stable for this case, where unity Reynolds
numbers and zero pressure and velocity gradients were assumed. An optimum relaxation

FIG. 2. Stability of the BP-BJ scheme.
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FIG. 3. Stability of the SP-BJ scheme.

factor of approximatelyω= 0.45 is observed, though this scheme exhibits significant stiff-
ness at low wave numbers. The scheme is unstable forω>0.57.

If scalar relaxation is used with the block Jacobi iteration (SP-BJ scheme defined by
Eq. (20)), the stability characteristics shown in Fig. 3 are obtained. The SP-BJ scheme is
observed to be unconditionally unstable.

Block Gauss–Siedel Scheme

Forward and backward block Gauss–Siedel schemes exhibit stability characteristics sim-
ilar to block Jacobi. Specifically, both BP-BFGS and BP-BBGS schemes are conditionally
stable, withωopt

∼= 0.50, and exhibit considerable low wave number stiffness. Also, both
scalar preconditioned systems, SP-BFGS and SP-BBGS, are unconditionally unstable. For
brevity, the stability plots for these four directionally biased schemes are not presented.

However, the construction of symmetric schemes from forward and backward block
Gauss–Siedel component steps yields good damping properties. In Fig. 4,ρ(ĜBP-BSGS),
where ĜBP-BSGS= ĜBP-BBGSĜBP-BFGS, is plotted vs non-dimensional wave number. The

FIG. 4. Stability of the BP-BSGS scheme.
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FIG. 5. Stability of the SP-BSGS scheme.

BP-BSGS scheme alleviates much of the low wave number stiffness associated with the
BP-BJ scheme. Good damping is observed for 0.70<ω<1.30. Optimum low wave number
damping is achieved for the 1-D scheme through over-relaxation,ω∼= 1.30. Optimum high
wave number damping, desired if a multi-grid procedure is to be employed, is achieved
nearω∼= 0.90. The BP-BSGS scheme remains stable toω= 2.00.

In Fig. 5, the stability for the SP-BSGS scheme is plotted. Unlike Jacobi and one-sided
Gauss–Siedel iteration, scalar preconditioning does not yield an unconditionally unstable
scheme when used with symmetric Gauss–Siedel iteration. Indeed, the damping character-
istics of the SP-BSGS scheme are fairly good for 0.90<ω<1.25. However, the scheme is
observed to become rapidly unstable at low wave numbers just above this range(ωmax

∼=
1.28).

Of the four schemes investigated, BP-BSGS was chosen for further investigation, since it
exhibits good damping properties and does not exhibit the potentially dangerous low wave
number instability of SP-BSGS near its optimum damping range.

Comparison with Single Phase

The lack of inter-field transfer terms in the basic scheme defined by Eq. (1) renders
the two fields dynamically uncoupled. Indeed, the model equation analyzed represents the
independent response of the uncoupled phases to the same pressure distribution. Consistent
with this observation, the multi-field stability results correspond closely to those obtained
for the discrete single-phase analog to Eq. (1). In particular, the eigenvalues of the basic
two-field system contain, as a subset, the eigenvalues arising in the single-field system.

To illustrate this, Fig. 6 shows an eigenvalue constellation for the BP-BSGS scheme
(ω= 0.90) applied to Eq. (6) with Re1=Re2= 1.0. A total of 21 modes(−π <φ <π)
were examined. At each of these wave numbers the two-field scheme returns four complex
eigenvalues(λ5= 0, since compatibility is enforced without relaxation). The rank 2 single-
phase system returns two complex eigenvalues. As seen in Fig. 6, these are equal to two of
the four eigenvalues returned by the two-field system at the same wave number. The authors
have observed (results not included for brevity) that the two new eigenvalues introduced
in the two-fluid system can be limiting at low cell Reynolds numbers(Re1,2< 1), but the
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FIG. 6. Comparison of two-field eigenvalues to the one-field analog for the BP-BSGS scheme.

attendant increase in amplification factor is relatively small and is limited to low wave
numbers.

Frozen Coefficient Linearization

It is necessary to maintain a full Newton linearization in the field continuity equations:

(αu)n+1 ≈ (αnun+1)+ (unαn+1)− (unαn). (26)

An alternative would be to lag the velocity in treating the volume fraction as a transported
scalar, i.e.,(αu)n+1≈ (unαn+1). This linearization choice is singular in the coupled scheme
(on inspection ofD).

On the other hand, such a “frozen coefficient” linearization may be employed for the
convection terms in the momentum equations, i.e.,(αuu)n+1≈ (αnunun+1). This is the ap-
proach that is conventionally utilized in pressure-based methods [7, 8]. Such a linearization
choice has little or no effect on the linear performance of the coupled scheme. Indeed, for
the particular discretization employed here, Eq. (3), such a frozen coefficient linearization
has no effect on the stability of the basic scheme (in the absence of inter-field transfer
terms). As illustrated below, however, the choice of frozen coefficient linearization in the
momentum equations affects the overall (non-linear) convergence of the scheme.

PARAMETRIC STUDIES

Reynolds Number

The effect of cell Reynolds number on stability can be assessed by parameterizing the
Reynolds numbers for the constituent fields. Figure 7 shows the stability plots for the
BP-BSGS scheme(ω= 0.90) for a range of Reynolds numbers(Re1=Re2) from 10−1 to
∞. Clearly the effect of the Reynolds number is a weak one, with only slightly deteriorated
damping observed at infinite cell Reynolds numbers.
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FIG. 7. BP-BSGS stability for a range of cell Reynolds numbers.

Inter-field Transfer

The introduction of interfacial dynamics and mass transfer couples the constituent fields.
The impact of such terms on the physics of the flow and stability of the algorithm be-
comes dependent on the density ratio(ρ1/ρ2), velocity ratio(u1/u2), and field 1 volume
fraction (α1). Therefore, in order to meaningfully parameterize the stability of inter-field
transfer terms, relevant engineering scales are adopted for these three flow parameters, and
the field Reynolds numbers. In particular, for high-pressure steam–water boiling heat ex-
changer systems, the choicesρ1/ρ2= 10, u2/u1= 1.5, andα1= 0.5 are relevant (hereafter
designated HPW). For “bubbly” air–water flows, the choices(ρ1/ρ2)= 1000, u2/u1= 1.1,
andα1= 0.95 are relevant (hereafter designated BAW). Typically, cell Reynolds numbers
of >103 arise in practical engineering computations. The values Re1=Re2=∞ are used
below.

The most commonly employed models for interfacial momentum transfer are drag, dis-
persion, and virtual mass. The stability characteristics of these forces, and mass transfer,
are treated below.

Drag

Drag is incorporated within the momentum equations as

M1⇒ M1+ D

M2⇒ M2− D,
(27)

where M1 and M2 denote the momentum equations in the baseline formulation (Eq. (1)).
Drag, and all other interfacial transfer terms considered below, is consistently incorporated
within the momentum equation interpolation procedure used for facial flux reconstruction
[7] and, therefore, appear in the operatorRx (Eq. (4)). Here,D is modeled as [12]

D = 1
8CDρc|u1− u2|(u2− u1)A′′′i , (28)

whereCD is the drag coefficient,ρc is the “carrier” field density, andA′′′i is the interfacial
area density. The assumed BAW and HPW scales are consistent with drag coefficients of
CD
∼= 1.0 and 0.1 respectively.
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FIG. 8. BP-BSGS stability for a range of non-dimensional drag.

Figure 8 shows a comparison of the effect of drag on the damping properties of the
BP-BSGS scheme(ω= 0.90). In this plot, the two sets of physical scales introduced above
(HPW, BAW) were specified, withµ1=µ2= 0 (inviscid). For physically reasonable mag-
nitudes ofCD, the influence of drag on the linear stability of the scheme is small. However,
extremely large values of drag (viz., unrealistic values as may occur in early iteration) are
observed to destabilize the scheme, as shown in the figure.

Mass Transfer

Mass transfer is incorporated within the momentum and continuity equations as

M1⇒ M1+ 021u2− 012u1

M2⇒ M2+ 012u1− 021u2

C1⇒ C1+ 021− 012

C2⇒ C2+ 012− 021,

(29)

where C1 and C2 denote the continuity equations in the baseline formulation (Eq. (1)). Here
0mnare mass transfer rates from fieldm to fieldn in kg/m3s, defined such that0mn≥ 0. These
terms are similar to drag, but are non-symmetric, and appear in the continuity equations.
For0mn≈0nm, the impact of mass transfer is similar to drag, so the non-symmetric cases
are considered here. For the case where0nm= 0, the maximum physically plausible value
of 0mn to be considered can be estimated from realizability constraints (i.e.,αn+1≥ 0) to
be

0mn∗ ≡ 0mn

ρmumαm/1x
≤ 1. (30)

Again, BP-BSGS is analyzed(ω= 0.90). Small values of donor field volume fraction
are taken(αm= 0.1), consistent with proximity to the realizability limit. Other scales are
taken as above (i.e., HPW, BAW, withµ1=µ2= 0 (inviscid analysis),CD= 0). Figure 9
illustrates that values of0mn∗ at the realizability limit do not significantly affect the linear
stability of the scheme, though as with drag, very large values of mass transfer can be
destabilizing.
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FIG. 9. BP-BSGS stability for a range of non-dimensional mass transfer.

Dispersion

Dispersion is incorporated within the momentum equations as

M1⇒ M1+ CTρ1(u2− u1)
2∂α2

∂x

M1⇒ M1− CTρ1(u2− u1)
2∂α2

∂x
.

(31)

Physically reasonable values of the dispersion coefficient areCT≤ 1.0. As with drag and
mass transfer, the influence of these terms on the stability of the linear scheme was found
to be small (plot not included for brevity).

Virtual Mass

Virtual mass is incorporated within the momentum equations as

M1⇒ M1− CVα2ρ1

[
u1
∂u1

∂x
− u2

∂u2

∂x

]
(32)

M2⇒ M2− CVα2ρ1

[
u2
∂u2

∂x
− u1

∂u1

∂x

]
.

Considering the case of no mass transfer, Eq. (32) can be manipulated to yield modified
effective convection terms in the two momentum equations:

∂

∂x
(ρ1α1u1u1)⇒

[
1+ CV

(
α2

α1

)]
∂

∂x
(ρ1α1u1u1)−

[
CV

(
ρ1

ρ2

)]
∂

∂x
(ρ2α2u2u2)

(33)
∂

∂x
(ρ2α2u2u2)⇒

[
1+ CV

(
ρ1

ρ2

)]
∂

∂x
(ρ2α2u2u2)−

[
CV

(
α2

α1

)]
∂

∂x
(ρ1α1u1u1).

Physically reasonable values of the virtual mass coefficient areCV ≤ 0.5. Figure 10 shows
the impact of virtual mass on the stability of the BP-BSGS scheme (ω= 0.90). Here the
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FIG. 10. BP-BSGS stability for a range of virtual mass coefficients.

BAW scales were run withCD= 1.0 and the HPW scales were run withCD= 0.1, as above.
Linear stability is almost unaffected by virtual mass for the BAW scales, whereas a more
noticeable but not significant impact is observed for the HPW scales.

COMAC RESULTS—1-D

A two-dimensional, two-field Navier–Stokes code, designated COMAC, has been de-
veloped by the authors. This code is evolved from our earlier work, which is based on
segregated pressure-based methodology [7]. Indeed, the spatial discretization employed in
COMAC is the same as that used in the forerunner code. The ultimate goal of this work
is to make COMAC a more robust and efficient analysis tool than its predecessor. The
vector Fourier analysis presented above has been used to guide selection of the iterative
and preconditioning scheme and linearization. To understand the effects of physical bound-
ary conditions, and to verify the results of the vector analysis, matrix stability results for
COMAC are included in this section. Sample convergence rates using the code applied in
1-D mode to a bubbly air–water flow are presented.

Comparison of Vector and Matrix Stability

To illustrate the validity of the foregoing vector stability analyses, and to investigate
the effect of physical boundary conditions on the scheme, a matrix stability analysis was
performed. The platform for the matrix analysis is COMAC, using the BP-BSGS scheme
introduced above.

A vertical air–water bubbly flow is investigated. Here, problem parameters were set at
ρ1= 1000 kg/m3, ρ2= 1 kg/m3, µ1= 10−3 kg/ms,µ2= 10−5 kg/ms,1x= 0.05 m, and
ni = 20 (i.e., L = 1.0 m, 20 cells). A simple bubble drag model due to Wallis [13] was
employed:

D = 1

8
CDρ1|u2− u1|(u2− u1)

6α2

Db
, CD ≡ 6.3

R0.385
eb

, Reb≡ ρ1|u2− u1|Db

µ1
. (34)
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FIG. 11. Comparison of vector and matrix analyses for an air–water bubbly flow.

The flow solver’s response to a given set of initial conditions,u1= 1.0 m/s,u2= 1.1 m/s,
α1= 0.9, andα2= 0.1, was studied. A bubble radius ofDb= 1.0 mm was set.ω was set to
0.8 (Eq. (17)).

Figure 11 shows that if periodic boundary conditions are applied, COMAC returns iter-
ation matrix eigenvalues which are coincident with those returned by the Fourier stability
analysis. If conventional duct flow boundary conditions are applied (inlet:u1, u2, α1 fixed,
dp/dx= 0; exit: p fixed,du1/dx, du2/dx, dα1/dx= 0), the eigenvalue spectrum is mod-
ified as shown.

Solver Performance

Figure 12a shows linear solver convergence rates for the periodic and non-periodic
COMAC runs at the first non-linear iteration (corresponding to Fig. 11). For this case, the

FIG. 12a. Comparison of BP-BSGS convergence histories for periodic and duct flow boundary conditions.
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FIG. 12b. Comparison of full Newton and frozen coefficient linearizations on outer loop convergence.

application of physical boundary conditions are observed to deteriorate damping of the
scheme somewhat. It is also noted that the physical boundary conditions considered reduce
the stability limit for the scheme fromω= 2.00 (refer to Fig. 4) toω∼= 0.86.

Figure 12b illustrates the outer (non-linear) convergence rates for this case. When a full
Newton linearization is employed [drag (non-linear inui ) and gravity linearized exactly],
convergence to machine zero is obtained in four iterations. However, if a frozen coefficient
linearization is utilized in the momentum equations, the convergence rate is significantly
deteriorated. For comparison, the best obtainable convergence rates for this case were also
obtained using the authors’ predecessor segregated pressure-based code [7]. For this simple
1-D case the segregated method returns nearly as good a convergence rate as the frozen
coefficient COMAC run.

The effects of mass transfer and under-relaxation factor on linear solver performance
were investigated next. COMAC retains the two-fluid approach for the energy equations;
that is, separate enthalpy equations are solved for each constituent field. Details of the imple-
mentation of the energy equations are beyond the scope of this paper, though they are fully
coupled to the continuity, momentum, and compatibility equations, full Newton lineariza-
tion is retained, and the block preconditioned iterative strategies employed are identical to
those introduced above. A 1-D boiling vertical flow was computed. Problem parameters
were set atρ1= 625 kg/m3,ρ2= 85 kg/m3,µ1= 7.7× 10−5 kg/ms,µ2= 2.4× 10−5 kg/ms,
1x= 0.05 m, and ni= 20 as above. Subcooled liquid is introduced at the inlet and volumetric
heating is applied. After several non-linear iterations mass transfer is initiated (once the lo-
cal temperatures exceed a critical value slightly above saturation temperture). Linear solver
residual histories are presented for the BP-BSGS scheme in Fig. 13a for an outer loop itera-
tion after mass transfer has begun. At this outer iteration the outlet vapor volume fraction is
0.2 and the outlet slipu2/u1= 1.1. As expected, the convergence rate increases with increas-
ing under-relaxation factor. The convergence rate is observed to deteriorate whenω is larger
than approximately 0.75. Figure 13b shows similar plots for an adiabatic case adapted from
the boiling flow just considered but with no heat/mass transfer and an inlet vapor volume
fraction of 0.1. In comparing the two cases, it is apparent that the presence of mass transfer
does not have a significant impact on the convergence of BP-BSGS. This is consistent with
the stability analysis presented above which indicated that the presence of mass transfer
does not adversely affect the amplification factors of the BP-BSGS scheme (see Fig. 9).
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FIG. 13a. Comparison of BP-BSGS convergence histories for 1-D boiling flow computation for a range of
relaxation parameters.

EXTENSION OF STABILITY ANALYSIS TO MULTIPLE FIELDS

The analyses presented above for two fields extend readily to an arbitrary number of
fields. As each new field is introduced to the basic scheme, two new eigenvalues appear,
corresponding to the additional momentum and continuity equations. These two addi-
tional eigenvalues are identical to the two additional eigenvalues obtained in extending the

FIG. 13b. Comparison of BP-BSGS convergence histories for 1-D adiabatic flow computation with similar
problem parameters as boiling flow in Fig. 13a.
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FIG. 14a. 2-D stability of the BP-BSGS scheme. AR= u/v= 1, ω= 0.80.

single-field system to a two-field system. Accordingly, then-field system exhibits stability
characteristics identical to those of the two-field system.

EXTENSION OF STABILITY ANALYSIS TO MULTIPLE DIMENSIONS

The stability analyses presented above for one dimension can also be readily extended to
multiple dimensions. For two fields, the resulting Fourier eigensystem is of rank 7. Figure 14
shows examples of 2-D stability results obtained for the BP-BSGS scheme, with no interfa-
cial transfer terms. Takingu= v, with µ1=µ2= 0 (inviscid), cell aspect ratio, AR≡1x/
1y= 1.0, andω= 0.80, the results in Fig. 14a are obtained. There it is observed that the 2-D
scheme exhibits good damping characteristics at all wave numbers away from the origin,
consistent with the observations made above for the 1-D scheme. However, the 2-D scheme
remains stable only toω= 0.93.

On high aspect ratio grids, as are characteristic of highL/DH boiling heat exchanger
geometries, long wavelength axial modes become poorly damped as Fig. 14b illustrates.

FIG. 14b. 2-D stability of the BP-BSGS scheme. AR= u/v= 100, ω= 0.80.
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FIG. 15. Comparison of COMAC and segregated scheme outer loop convergence rates for a two-dimensional
bubbly air–water vertical duct flow.

There a grid aspect ratio of 100 is assumed,v is taken to be equal tou/AR (“well-guided”
flow), andω= 0.80. Though the 2-D scheme remains stable toω= 0.97, long wavelength
axial modes are very poorly damped. This low axial wave number stiffness is effectively
handled by deploying a coupled block correction strategy, as discussed in [7].

COMAC RESULTS—2-D

In order to demonstrate the validity of the 2-D stability results and the overall effectiveness
of the algorithm for realistic multi-dimensional analysis, results of two sample computa-
tions performed with COMAC run in two-field, 2-D mode are presented in this section. The
first simulation is of laminar air–water bubbly flow in a vertical duct. The liquid Reynolds

FIG. 16a. Predicted average volume fraction vs axial coordinate for a two-dimensional boiling turbulent
steam–water vertical duct flow.
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FIG. 16b. Outer loop convergence history for a two-dimensional boiling turbulent steam–water vertical duct
flow.

number was 2332, and the density ratio was 858. Zero slip and an inlet vapor volume frac-
tion of 0.10 were specified. The length to height ratio of the geometry was 6.0. A 64× 32
mesh was employed. Figure 15 shows the outer loop convergence history for this compu-
tation using COMAC and its segregated algorithm-based predecessor. COMAC converges
to machine zero in approximately 10 iterations, compared to over 100 for the segregated
algorithm.

The second simulation is of turbulent boiling steam–water flow in a vertical duct. In
this simulation, subcooled liquid enters a wall-heated vertical duct. Significant boiling is
affected through mass transfer models based on wall heating and interfacial thermodynam-
ics. A 64× 32 mesh was employed. Figure 16a shows the predicted average steam volume
fraction vs axial coordinate. Figure 16b shows the outer loop convergence history for this
computation using COMAC. Because the Newton method is not, in general, globally con-
vergent, a finite physical time step is introduced into the discretization for the first five
iterations to maintain non-linear stability. At that point the physical time step is set to infin-
ity, the Newton scheme is recovered, and the code exhibits Newton convergence to machine
zero in another five iterations.

CONCLUSION

An implicit method, developed for the solution of the viscous full multi-fluid equations,
has been developed. Stability analyses were performed for preconditioned iterative schemes
applied to the coupled discrete system of equations which arise in the formulation.

Several conclusions are drawn in the work, including the following: (1) A block sym-
metric Gauss–Siedel scheme with block Jacobi preconditioning (BP-BSGS) gives rise to
good damping properties for the multi-fluid system. Good damping for the 1-D scheme
can be obtained within a relaxation factor range of 0.8<ω<1.5. (2) A minimum level
of exactness must be employed in developing an approximate Newton linearization for
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the fully coupled system. An exact linearization in the momentum equations affords no
benefit to the linear stability of the scheme compared to a “frozen” coefficient lineariza-
tion, but can significantly improve the non-linear performance of the scheme. (3) In the
absence of inter-field transfer terms, the basic multi-fluid scheme exhibits very similar
stability characteristics to its single-phase analog. Only at very low cell Reynolds num-
bers does the multi-fluid system exhibit deteriorated damping properties compared to sin-
gle phase. (4) Reynolds number effects are moderate; the limit of infinite cell Reynolds
numbers marginalizes the stability of the scheme only slightly. (5) Implicit treatment of
several interfacial transfer mechanisms investigated (mass transfer, drag, dispersion, and
virtual mass) can affect the stability of the scheme, but the BP-BSGS scheme analyzed
retains good damping characteristics for physically reasonable values of these modeled
terms. (6) A multi-fluid Navier–Stokes code which deploys the BP-BSGS scheme has
been developed. Comparison of vector and matrix stability verified the correctness of
the vector analyses presented and demonstrated that physical boundary conditions can
deteriorate the damping characteristics of the scheme. (7) The two-dimensional stabil-
ity characteristics of the scheme are generally consistent with one-dimensional results,
with high aspect ratio grids introducing diminished low wave number axial mode damp-
ing, as commonly observed in most CFD algorithms. However, the maximum stable re-
laxation factors for the BP-BSGS scheme drop from 2.00 in 1-D to approximately 0.95
in 2-D.

APPENDIX

A ≡ ∂E

∂Q

=



2ρ1α1u1− µ1α1
∂
∂x 0 ρ1u1u1− µ1

∂u1
∂x 0 0

0 2ρ2α2u2− µ2α2
∂
∂x 0 ρ2u2u2− µ2

∂u2
∂x 0

ρ1α1 0 ρ1u1 0 0

0 ρ2α2 0 ρ2u2 0

0 0 0 0 0



∂

∂Q

(
B
∂Q

∂x

)
=



0 0
∂p
∂x 0 α1

∂
∂x•

0 0 0
∂p
∂x α2

∂
∂x•

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, C ≡ ∂H

∂Q
=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0

 (A1)

D = diag[Di jk=1,Di jk=2, . . . ,Di jk=ni jk ],
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