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A fully coupled implicit method has been developed for solving the viscous full
multi-fluid equations, which incorporate transport and generation of mass and mo-
mentum for each component present in a system. This work presents stability analy-
sis and representative computational results of this algorithm. The stability analyses
demonstrate the performance of several iterative schemes applied to the solution of
the linearized block system which arises in the fully implicit formulation. These
include block Jacobi and symmetric block Gauss—Siedel schemes using two forms
of relaxation. A hierarchy of increasing physical complexity is pursued, starting
with one-dimensional, two-fluid systems with minimum inter-field dynamic cou-
pling and no mass transfer. These analyses are then extended to systems employing
physically important inter-field forces (drag, dispersion, virtual mass). The effects
of mass transfer, multiple fields (i.e., more than 2), and multiple dimensions are
considered. A two-fluid Navier—Stokes code has been developed, guided by the sta-
bility analyses. One-dimensional and two-dimensional results generated with this
code are presented, which verify the validity of the stability analyses presented for
the coupled scheme, and the effectiveness of the method for flows of engineering
relevance. © 1999 Academic Press

INTRODUCTION

Multi-phase flows which require full multi-fluid modeling arise in a wide class of eng
neering problems, where non-equilibrium dynamics and thermodynamics of the interf:
between constituents play important roles in the evolution of the mean flow. Example:
clude cyclone separators, two-phase flow in jets and curved ducts, and boiling flow in
exchangers. Such flows contrast with multi-phase flows where interfacial dynamics
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thermodynamics occur on such small scales that mixture momentum and energy equi:
can be employed. The present work focuses on flows where such homogeneous m
approximations are not valid and full multi-fluid modeling is appropriate. In this approa
separate equations for the transport and generation of mass, momentum, and ener
each constituent are solved.

In the past two decades, two principal classes of algorithms have been develope
the solution of full multi-fluid systems. The first of these is derived from the implici
continuous-fluid-Eulerian (ICE) method and involves a coupled or semi-coupled tir
marching solution procedure [1-3]. These methods have found wide use in transient &
cations in the area of nuclear reactor safety. The second class of methods is the multi
extension [5—7] of pressure-based schemes, widely used for single-phase applicatior
These methods are segregated schemes that employ an iterative solution strategy alor
under-relaxation. They have also enjoyed widespread use within the multi-fluid com
nity.

In spite of their relative successes, both classes of schemes encounter some speci
merical difficulties in multi-fluid computations. Itis well recognized that the single-presst
full multi-fluid time-marching system is non-hyperbolic in a strict sense because the ei
values of the inviscid differential system are complex for system parameters (e.g., vol
fraction, slip) of practical interest [3, for example]. This raises issues regarding the stak
of transient multi-fluid methods as well as the formulation of characteristic-based upw
discretization schemes. Pressure-based methods, on the other hand, are not based u
unsteady system and, therefore, do not appear to suffer from the same problems. (It s
be pointed out that this has been the source of some controversy within the research co
nity.) However, the segregated procedures conventionally used in the pressure-based
ods cause stability and robustness problems because the inter-phasic coupling terms ¢
be treated in fully implicit fashion. This issue can be especially troubling when interfac
force models are non-linear in form and/or large in magnitude [7, for example]. Consis
with these observations, the overall objective of this work has been to develop a cla:
implicit schemes for full multi-fluid computations, which are both well posed and ful
coupled.

The focus of this work is on obtaining steady-state solutions of full multi-fluid sy
tems. Accordingly, the time-marching or relaxation procedure used serves merely &
iterative device to drive the solution errors to zero. Over the past decade, preconditic
time-marching methods have become widely researched and used [9, for example].
methods introduce artificial time derivatives which control the system eigenvalues
thereby optimize stability and convergence properties of the scheme. In the conte;
steady-state multi-fluid computations, the preconditioning technique introduces the ir
esting possibility of selecting the time derivatives such that the system remains hypert
and, therefore, well posed for time marching. The examination of this promising avent
one of the objectives of the paper.

The paper is organized as follows. The theoretical development begins with the ste
state equations and the discretization framework previously developed in conjunction
the pressure-based, multi-fluid algorithm. We introduce two under-relaxation procedt
the first based on the individual scalar transport equations and the second based on th
coupled vector system. It is shown that the two under-relaxation schemes correspo
preconditioning systems, which we refer to as scalar and block preconditioning syst
respectively.
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Ahierarchy of analytical and computational procedures, including von Neumann stab
analysis, matrix stability analysis, and sample computations (using a full non-linear C
code based on the method), are utilized to probe the stability and convergence prop
of the implicit scheme. The results of the von Neumann and matrix stability theories
restricted to the linearized version of the multi-fluid system. The von Neumann stabi
analysis further assumes the use of periodic boundary conditions. In spite of the limitati
the stability analyses provide rich insight into algorithmic performance. Indeed, these &
yses serve as the guide for the selection of the optimal preconditioning system and sol
procedure. Stability analyses are used to investigate the baseline performance of s
candidate schemes. The effects of iterative method, preconditioning strategy, lineariz:
strategy, and Reynolds number are investigated, and comparison to single-phase p
mance is presented. A hierarchy of increasing physical complexity is then pursued, sta
with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling al
no mass transfer. These analyses are then extended to systems employing physically i
tant inter-field forces (drag, dispersion, virtual mass). The effects of mass transfer, mul
fields (i.e., more than 2), and multiple dimensions are then considered.

Based upon the findings of these stability studies, a fully non-linear, multi-dimensiol
multi-field code, COMAC, has been developed. Representative computational results
tained with COMAC which verify the stability findings and demonstrate the capabilit
of the scheme under realistic operating conditions and practical boundary condition:
presented. In the interests of clarity, all the analyses and computations are performe
the one-dimensional system first, followed by more practical multi-dimensional results

THEORETICAL FORMULATION

Governing Equations

In full multi-fluid formulations, independent equations are employed for the transpc
generation of mass, momentum, and energy for each field presentin a system. The ens
averaged governing equations for steady-state, one-dimensional two-fluid flow without
and mass transfer can be written as [10]
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where a conventional single-pressure approximation has been invoked. In what follc

each field’s density and viscosity are assumed constant. For convenience, a faggisof
assumed embedded within the molecular viscosities.
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As written, Eqg. (1) employs no dynamic coupling (e.g., drag) between fields 1 anc
other than a common pressure. This model system serves as a platform for developir
implicit method presented below. The influence of dynamic coupling terms due to di
virtual mass, and dispersion will be introduced. Also, the effects of mass transfer, alter
linearizations, multiple dimensions, and multiple fields on stability are investigated.

Discretization

Equation (1) is written in vector form as

JoE
R(Q) = X
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Several finite volume spatial discretization strategies can be applied. For the present\
second-order central differencing is selected for pressure gradient and viscous terms.
order upwinding is used in conjunction with a conventional pressure-weighted interpola
scheme [11] for the convection terms in the momentum and continuity equations. Hic
order accuracy can be employed straightforwardly, though for the purposes of the t
analyses presented in this paper only the stated discretization will be considered. Wi
loss of generality in the development which followsx is taken as constant, andis
assumed positive.

Referring to Fig. 1, the discretization of Eq. (2) can be summarized as

0
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FIG. 1. 1-D control volumes on a Cartesian grid.
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where the operators used in Eqgs. (3) are defined as

(E_x/20)e = P, (@)e = (¢pp+ Pr)/2

(OxP)e = (P — ¢Pp)/ AX, (82xP)p = (P — Pw)/2AX @

(RxW)e = m + ( > [(52x Ple — (8 p)e]~

PU/AX + 2/ AX2

In Eq. (4), the second term on the RHS of tRegoperator corresponds to the pressure
weighted interpolation [11].

Implicit Solution Procedure
Applying an exact Newton linearization to Eq. (2) yields
R'(QAQ = —R(Q), ®)

where

9Q
R(Q) = —A +8Q<Bax>+c

and Jacobians

_9E 9Q _9H
A= aq< ) =30

are given in the Appendix.
The spatial discretization, given in Egs. (3), is applied consistently on the RHS and L
of Eq. (5). The fully implicit discrete linearized system becomes

PQ" = S(QM), (6)

where, for notational simplicity in what follows, a naxformulation is adopted. In Eq. (6),
the block-banded matrif (pentadiagonal with & 5 blocks for 1-D, two-field) corre-
sponds to the discretization &' (Q"), and S(Q") corresponds to the discretization of
—R(QM +R’(Q") e Q". For completeness, vectd®Q"+! andS(Q") are given in the Ap-
pendix. The Newton scheme serves as a useful platform for investigating the effective
of solution strategies for solving the discrete system.

General Iterative Solution
A class of iterative schemes for the solution of Eq. (6) can be defined from
M Qn+1,k+l — NQn+1,k + S(Qn) (7)
where
P=M-N (8)

represents the iterative splitting adopted.
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To facilitate discussion of the preconditioning and iterative strategies developed be
P can be decomposed as
P=D+ (L +U), 9)

whereD is block diagonal, while. andU are strictly lower and upper block triangular. A
decomposition oD is also introduced as

D = Dg + Do + D, (10)

where, for the linearization and discretization invoked, block diagonal matisgiven in
the Appendix and has the structure

X X Xl | X X X X X X
X X X X X X X X X
D =diagq | X X X, X X X, | X X X
X X X X X X X
1 1 1 1 1 1

(11)

D4 andD,, correspond to diagonal and off-diagonal terms in rows 1-4 in each bldzkf
contains only the row 5 entries corresponding to the compatibility conditieha, = 1.

Time-Marching and Relaxation Formulations

Iterative procedures defined by Eg. (7) in general require some form of pseudo-i
stepping or relaxation, to obtain stability and/or optimum damping. For example, the
laxation formulation conventionally used in segregated pressure-based schemes [8] m
expressed in vector form as

<M +Dd((1;‘”))>ok+l NQ*+ S+ Dg 1= C”)Q" (12)
Equation (12) can be written as an equivalent time-marching scheme,
Fs§ +MQM =NQK+ S, (13)
by making the identification
s = Dy ; ) At (14)

Alternatively, a block-relaxation procedure may be defined:

(Mw(%))d+1 NG +5+DE " gx (15)

Equation (15) can be written as an equivalent time-marching scheme with block Ja
preconditioning,
9Q

Fe—r +M Q' =NQK+ S, (16)
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by making the identification

(1-w)
w

I'e=D

At. (17)

In practice, the algebraic compatibility conditidf oy = 1 is enforced exactly. Accord-
ingly, D is replaced byp — D. in Eqgs. (15) and (17).

Equations (12)—(17) illustrate that relaxation formulations are closely related to tir
marching solution methods. However, the form of the time derivatives in Egs. (13) and (
is different from the standard unsteady time derivatives used in conventional time-marc
procedures [1-3]. Here, the time derivatives are “preconditioned” by the malticasd
I's. Accordingly, we refer td"s in Eqg. (13) as the scalar preconditioning (or SP) matri
and tol'g in Eqg. (16) as the block preconditioning (or BP) matrix. The time-marchir
formulation is presented only for reasons of clarity. In the authors’ flow solver, the ti
step is not directly specified; rather, the relaxation faatas specified and Egs. (12) and
(15) are implemented.

Block Jacobi Scheme

For a block Jacobi iteration,
Mgy = D, Ngyj= —(L +U). (18)

When used with block Jacobi preconditioning, this scheme (hereafter designated BF
is written

FB§ +DQ* = —(L+UVQ*+S (19)

A block Jacobi iteration with scalar relaxation (hereafter designated the SP-BJ sche
is written

rs?2 £ DM = ~(L +U)Q*+ S (20)

Block Gauss-Siedel Scheme

For a forward sweep block Gauss—Siedel scheme,
Mrees=D + L, Neses = —U. (21)

Analogous to Egs. (19) and (20), BP-BFGS and SP-BFGS schemes are defined:

FBZ—tQ—i-(DnLL)Q"“:—UQk—i—S (22)
Fs¥ +(D+L)Q = —uQ+s (23)

In practice the forward sweep block Gauss—Siedel schemes are used in conjunction
symmetric backward sweeps, defined analogously to Egs. (22) and (23). These symn
schemes are designated BP-BSGS and SP-BSGS, below.
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STABILITY ANALYSIS

Vector von Neumann analysis is employed to investigate the stability characteristic
the four preconditioned systems defined by Eqgs. (19)—(20) and (22)—(23). These cc
written in the common form

G1Q" =G,Q + s (24)
The iteration matrix associated with the general scheme defined by Eq. (24) is

G =G;'G,. (25)

The stability of the iterative schemes is assessed below by examining the eigenvalu
the Fourier symbolé = é[léz, of their iteration matrixG.

For a non-preconditioned, fully implicit schen@= P, whereP is the Fourier symbol
of the matrix operatoP. For the schemes considerm andéz can be easily constructed
by splitting P appropriately (i.e.ﬁz M — N) and applying the preconditioning operators
used.

There are eight physical parameters which appear in the system: cell Reynolds 1
bers associated with each phase (F®s), density ratio(p1/p2), velocity ratio(u;/us),
field 1 volume fraction(e1), and pressure and velocity gradient terms arising from tt
Newton linearizationdy Uz, o« p). In what follows, stability characteristics are studied fo
the proposed iterative procedures applied to Eqg. (6), for a range of physical paramete
interest.

Block Jacobi Scheme

The Fourier iteration matrix associated with the BP-BJ scheme defined in Eg. (1€
Gep.ss=Mgh s Nap.ss For this scheme, the stability characteristics given in Fig. 2 a
obtained. Here, the spectral radius of the amplification matrix for the BP-BJ schem
plotted vs non-dimensional wave number.

The BP-BJ scheme is clearly conditionally stable for this case, where unity Reyn
numbers and zero pressure and velocity gradients were assumed. An optimum relax

/
///
PO ©=100/
I <
0.85.
: 085 065
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0 /2 0 n

FIG. 2. Stability of the BP-BJ scheme.



86 KUNZ, COPE, AND VENKATESWARAN

p(G)

1.0 ”’"‘"-‘,;...

0.0 Il Il | Il 1 I}

FIG. 3. Stability of the SP-BJ scheme.

factor of approximately = 0.45 is observed, though this scheme exhibits significant stif
ness at low wave numbers. The scheme is unstable f00.57.

If scalar relaxation is used with the block Jacobi iteration (SP-BJ scheme definec
Eqg. (20)), the stability characteristics shown in Fig. 3 are obtained. The SP-BJ schen
observed to be unconditionally unstable.

Block Gauss—Siedel Scheme

Forward and backward block Gauss—Siedel schemes exhibit stability characteristics
ilar to block Jacobi. Specifically, both BP-BFGS and BP-BBGS schemes are condition
stable, withwep = 0.50, and exhibit considerable low wave number stiffness. Also, bc
scalar preconditioned systems, SP-BFGS and SP-BBGS, are unconditionally unstable
brevity, the stability plots for these four directionally biased schemes are not presente

However, the construction of symmetric schemes from forward and backward bl
Gauss-Siedel component steps yields good damping properties. In lagagp BSGY,
WhereGBp BSGS= GBp BBGSGBP BrGs IS plotted vs non-dimensional wave number. Th

1.0 =5
pG) | X

0.0 1 | | Il

FIG. 4. Stability of the BP-BSGS scheme.
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FIG. 5. Stability of the SP-BSGS scheme.

BP-BSGS scheme alleviates much of the low wave number stiffness associated witl
BP-BJ scheme. Good damping is observed fé0&: w < 1.30. Optimum low wave number
damping is achieved for the 1-D scheme through over-relaxatiénl.30. Optimum high
wave number damping, desired if a multi-grid procedure is to be employed, is achie
nearo =0.90. The BP-BSGS scheme remains stable t62.00.

In Fig. 5, the stability for the SP-BSGS scheme is plotted. Unlike Jacobi and one-si
Gauss-Siedel iteration, scalar preconditioning does not yield an unconditionally unst
scheme when used with symmetric Gauss—Siedel iteration. Indeed, the damping char
istics of the SP-BSGS scheme are fairly good f@00< o < 1.25. However, the scheme is
observed to become rapidly unstable at low wave numbers just above this(tapgé&
1.28).

Of the four schemes investigated, BP-BSGS was chosen for further investigation, sir
exhibits good damping properties and does not exhibit the potentially dangerous low v
number instability of SP-BSGS near its optimum damping range.

Comparison with Single Phase

The lack of inter-field transfer terms in the basic scheme defined by Eq. (1) renc
the two fields dynamically uncoupled. Indeed, the model equation analyzed represent
independent response of the uncoupled phases to the same pressure distribution. Cor
with this observation, the multi-field stability results correspond closely to those obtail
for the discrete single-phase analog to Eq. (1). In particular, the eigenvalues of the |
two-field system contain, as a subset, the eigenvalues arising in the single-field systel

To illustrate this, Fig. 6 shows an eigenvalue constellation for the BP-BSGS schi
(w=0.90) applied to Eq. (6) with Re=Re, =1.0. A total of 21 modeg—7 <¢ <)
were examined. At each of these wave numbers the two-field scheme returns four con
eigenvaluesgis =0, since compatibility is enforced without relaxation). The rank 2 singl
phase system returns two complex eigenvalues. As seen in Fig. 6, these are equal to 1
the four eigenvalues returned by the two-field system at the same wave number. The at
have observed (results not included for brevity) that the two new eigenvalues introdt
in the two-fluid system can be limiting at low cell Reynolds numh@&s, , < 1), but the
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FIG. 6. Comparison of two-field eigenvalues to the one-field analog for the BP-BSGS scheme.

attendant increase in amplification factor is relatively small and is limited to low wa
numbers.

Frozen Coefficient Linearization

Itis necessary to maintain a full Newton linearization in the field continuity equation
(au)ﬂ+l ~ (anun+1) + (unan+1) _ (unan)' (26)

An alternative would be to lag the velocity in treating the volume fraction as a transpol
scalar, i.e.(au)"! ~ (u"a"*1). This linearization choice is singular in the coupled schen
(on inspection oD).

On the other hand, such a “frozen coefficient” linearization may be employed for
convection terms in the momentum equations, {cuu)"** ~ («"u"u"*1). This is the ap-
proach that is conventionally utilized in pressure-based methods [7, 8]. Such a lineariz:
choice has little or no effect on the linear performance of the coupled scheme. Indeec
the particular discretization employed here, Eq. (3), such a frozen coefficient lineariza
has no effect on the stability of the basic scheme (in the absence of inter-field trar
terms). As illustrated below, however, the choice of frozen coefficient linearization in-
momentum equations affects the overall (non-linear) convergence of the scheme.

PARAMETRIC STUDIES

Reynolds Number

The effect of cell Reynolds number on stability can be assessed by parameterizin
Reynolds numbers for the constituent fields. Figure 7 shows the stability plots for
BP-BSGS schemgo = 0.90) for a range of Reynolds numbeiRe, = Re,) from 107! to
oo. Clearly the effect of the Reynolds humber is a weak one, with only slightly deteriora
damping observed at infinite cell Reynolds numbers.
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FIG. 7. BP-BSGS stability for a range of cell Reynolds numbers.

Inter-field Transfer

The introduction of interfacial dynamics and mass transfer couples the constituent fit
The impact of such terms on the physics of the flow and stability of the algorithm |
comes dependent on the density raig/ p2), velocity ratio(u;/uy), and field 1 volume
fraction («1). Therefore, in order to meaningfully parameterize the stability of inter-fie
transfer terms, relevant engineering scales are adopted for these three flow paramete
the field Reynolds numbers. In particular, for high-pressure steam—water boiling hea
changer systems, the choig@g o, = 10, uy/u; = 1.5, ande; = 0.5 are relevant (hereafter
designated HPW). For “bubbly” air-water flows, the choi¢es p,) =100Q u,/u; = 1.1,
anda; = 0.95 are relevant (hereafter designated BAW). Typically, cell Reynolds numb
of >10° arise in practical engineering computations. The valugs-Ree, = co are used
below.

The most commonly employed models for interfacial momentum transfer are drag,
persion, and virtual mass. The stability characteristics of these forces, and mass tral
are treated below.

Drag

Drag is incorporated within the momentum equations as

Ml1=M1+D

@7)
M2 = M2 — D,

where M1 and M2 denote the momentum equations in the baseline formulation (Eq.
Drag, and all other interfacial transfer terms considered below, is consistently incorpor
within the momentum equation interpolation procedure used for facial flux reconstruc
[7] and, therefore, appear in the operayr(Eg. (4)). Here D is modeled as [12]

D = $Cppclus — Uz|(Uz — U1 A", (28)

whereCp is the drag coefficientp, is the “carrier” field density, andy” is the interfacial
area density. The assumed BAW and HPW scales are consistent with drag coefficier
Cp=1.0 and 0.1 respectively.
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FIG. 8. BP-BSGS stability for a range of non-dimensional drag.

Figure 8 shows a comparison of the effect of drag on the damping properties of
BP-BSGS schemev = 0.90). In this plot, the two sets of physical scales introduced abo
(HPW, BAW) were specified, witlx; = 2 = 0 (inviscid). For physically reasonable mag-
nitudes ofCp, the influence of drag on the linear stability of the scheme is small. Howev
extremely large values of drag (viz., unrealistic values as may occur in early iteration)
observed to destabilize the scheme, as shown in the figure.

Mass Transfer
Mass transfer is incorporated within the momentum and continuity equations as

M1 = M1+ I'?u, — 1y,
M2 = M2 + I'2u; — 'y,
Cl=Cl+4+Tr?1-r12
C2= C2+4+ 11212,

(29)

where C1 and C2 denote the continuity equations in the baseline formulation (Eq. (1)). |
I'™"are mass transfer rates from fietdo fieldn in kg/m®s, defined such th&™" > 0. These
terms are similar to drag, but are non-symmetric, and appear in the continuity equati
ForI'M"~ I'"™M the impact of mass transfer is similar to drag, so the non-symmetric ca
are considered here. For the case whH&f@= 0, the maximum physically plausible value
of I'™" to be considered can be estimated from realizability constraintsoi:e > 0) to
be

an*

an

—— <1 (30)
PmUmam/AX

Again, BP-BSGS is analyze@ = 0.90). Small values of donor field volume fraction
are takenam = 0.1), consistent with proximity to the realizability limit. Other scales ar
taken as above (i.e., HPW, BAW, wifly = i, = 0 (inviscid analysis)Cp = 0). Figure 9
illustrates that values df™™ at the realizability limit do not significantly affect the linear
stability of the scheme, though as with drag, very large values of mass transfer ca
destabilizing.
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FIG.9. BP-BSGS stability for a range of non-dimensional mass transfer.

Dispersion

Dispersion is incorporated within the momentum equations as

d
M1 = M1+ Crpa(Us — up)2 2

aX

5 (31)
M1 = M1 — Cypy(up — U1)2§.

Physically reasonable values of the dispersion coefficierfare 1.0. As with drag and
mass transfer, the influence of these terms on the stability of the linear scheme was f
to be small (plot not included for brevity).

Virtual Mass

Virtual mass is incorporated within the momentum equations as

BIVEY duy
M1 M1 -C Up— — Up—
= Va2/01[ 1 ax 2 8x}
(32)
duy duq
M2 M2 —C Up— —uUg——|.
= vazpl[ 2 Ix 1 8x}

Considering the case of no mass transfer, Eq. (32) can be manipulated to yield moc
effective convection terms in the two momentum equations:

P

0 o2 0
i > l1ron(2) 2 —lc
8X(,O1Ol1U1U1) { + v(al>] ax(Plalulul) { v(p2

d
)] &(,Ozazuzuz)
(33)

3 p1\] @ az\ | @
2 1+cy(2) |2 “lov( %) | X .
8X(,Ozolzuzuz) = [ +Cv (pz)] aX(PZOIzUzUz) [ V(al)] % (pro1UsUy)

Physically reasonable values of the virtual mass coefficier@are 0.5. Figure 10 shows
the impact of virtual mass on the stability of the BP-BSGS scheme @.90). Here the
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FIG. 10. BP-BSGS stability for a range of virtual mass coefficients.

BAW scales were run wit€p = 1.0 and the HPW scales were run with = 0.1, as above.
Linear stability is almost unaffected by virtual mass for the BAW scales, whereas a Ir
noticeable but not significant impact is observed for the HPW scales.

COMAC RESULTS—1-D

A two-dimensional, two-field Navier—Stokes code, designated COMAC, has been
veloped by the authors. This code is evolved from our earlier work, which is based
segregated pressure-based methodology [7]. Indeed, the spatial discretization emplo
COMAC is the same as that used in the forerunner code. The ultimate goal of this v
is to make COMAC a more robust and efficient analysis tool than its predecessor.
vector Fourier analysis presented above has been used to guide selection of the ite
and preconditioning scheme and linearization. To understand the effects of physical bo
ary conditions, and to verify the results of the vector analysis, matrix stability results
COMAC are included in this section. Sample convergence rates using the code appli
1-D mode to a bubbly air-water flow are presented.

Comparison of Vector and Matrix Stability

To illustrate the validity of the foregoing vector stability analyses, and to investig:
the effect of physical boundary conditions on the scheme, a matrix stability analysis
performed. The platform for the matrix analysis is COMAC, using the BP-BSGS sche
introduced above.

A vertical air—water bubbly flow is investigated. Here, problem parameters were se
p1=1000 kg/ni, p =1 kg/n?, i =10"3 kg/ms, o, = 10-° kg/ms, Ax =0.05 m, and
ni=20 (i.e.,L=1.0 m, 20 cells). A simple bubble drag model due to Wallis [13] wa
employed:

6.3 Rep = ,01|U2_U1|Db'

= @385’ I (34)

1 6
D= éCDpl|u2_u1|(u2_ul)D—27 Co
b
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COMAUC, periodic bc
COMAC, duct be

FIG. 11. Comparison of vector and matrix analyses for an air-water bubbly flow.

The flow solver’s response to a given set of initial conditianss: 1.0 m/s,u, = 1.1 m/s,
a1=0.9, anday = 0.1, was studied. A bubble radius Bf, = 1.0 mm was setw was set to

0.8 (Eq. (17)).

Figure 11 shows that if periodic boundary conditions are applied, COMAC returns i
ation matrix eigenvalues which are coincident with those returned by the Fourier stab
analysis. If conventional duct flow boundary conditions are applied (injeti,, «; fixed,
dp/dx=0; exit: p fixed,du; /d X, dup/d x, da; /dx = 0), the eigenvalue spectrum is mod-

ified as shown.

Solver Performance

Figure 12a shows linear solver convergence rates for the periodic and non-peri
COMAC runs at the first non-linear iteration (corresponding to Fig. 11). For this case,

RMS(error)

10*

non-periodic

periodic

L I I I

20 40 60 80 160
BP-BSGS Iteration

FIG. 12a. Comparison of BP-BSGS convergence histories for periodic and duct flow boundary condition
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FIG. 12b. Comparison of full Newton and frozen coefficient linearizations on outer loop convergence.

application of physical boundary conditions are observed to deteriorate damping of
scheme somewhat. It is also noted that the physical boundary conditions considered re
the stability limit for the scheme frorma = 2.00 (refer to Fig. 4) tav = 0.86.

Figure 12b illustrates the outer (non-linear) convergence rates for this case. When :
Newton linearization is employed [drag (non-lineain and gravity linearized exactly],
convergence to machine zero is obtained in four iterations. However, if a frozen coeffic
linearization is utilized in the momentum equations, the convergence rate is significa
deteriorated. For comparison, the best obtainable convergence rates for this case wer
obtained using the authors’ predecessor segregated pressure-based code [7]. For this
1-D case the segregated method returns nearly as good a convergence rate as the
coefficient COMAC run.

The effects of mass transfer and under-relaxation factor on linear solver performe
were investigated next. COMAC retains the two-fluid approach for the energy equati
thatis, separate enthalpy equations are solved for each constituent field. Details of the ir
mentation of the energy equations are beyond the scope of this paper, though they are
coupled to the continuity, momentum, and compatibility equations, full Newton lineari:
tion is retained, and the block preconditioned iterative strategies employed are identic
those introduced above. A 1-D boiling vertical flow was computed. Problem parame
were set apy = 625 kg/nt, po = 85 kg/n?, 1 = 7.7 x 1075 kg/ms o = 2.4 x 10-° kg/ms,
AX =0.05m, and ni= 20 as above. Subcooled liquidis introduced at the inletand volumet
heating is applied. After several non-linear iterations mass transfer is initiated (once thi
cal temperatures exceed a critical value slightly above saturation temperture). Linear s
residual histories are presented for the BP-BSGS scheme in Fig. 13a for an outer loop
tion after mass transfer has begun. At this outer iteration the outlet vapor volume fractic
0.2 andthe outletslip,/u; = 1.1. As expected, the convergence rate increases with incre
ing under-relaxation factor. The convergence rate is observed to deteriorateveiarger
than approximately 0.75. Figure 13b shows similar plots for an adiabatic case adapted
the boiling flow just considered but with no heat/mass transfer and an inlet vapor volt
fraction of 0.1. In comparing the two cases, it is apparent that the presence of mass tra
does not have a significant impact on the convergence of BP-BSGS. This is consistent
the stability analysis presented above which indicated that the presence of mass tre
does not adversely affect the amplification factors of the BP-BSGS scheme (see Fig.
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FIG. 13a. Comparison of BP-BSGS convergence histories for 1-D boiling flow computation for a range
relaxation parameters.

EXTENSION OF STABILITY ANALYSIS TO MULTIPLE FIELDS

The analyses presented above for two fields extend readily to an arbitrary numbe
fields. As each new field is introduced to the basic scheme, two new eigenvalues ap
corresponding to the additional momentum and continuity equations. These two &
tional eigenvalues are identical to the two additional eigenvalues obtained in extendin

RMS(error)
10° ¢
100 A
10°
107

—2

10

0 100 200 300 400
BP-BSGS Iteration

FIG. 13b. Comparison of BP-BSGS convergence histories for 1-D adiabatic flow computation with sim
problem parameters as boiling flow in Fig. 13a.
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T

FIG. 14a. 2-D stability of the BP-BSGS scheme. ARu/v =1, » =0.80.

single-field system to a two-field system. Accordingly, thield system exhibits stability
characteristics identical to those of the two-field system.

EXTENSION OF STABILITY ANALYSIS TO MULTIPLE DIMENSIONS

The stability analyses presented above for one dimension can also be readily extenc
multiple dimensions. For two fields, the resulting Fourier eigensystem is of rank 7. Figure
shows examples of 2-D stability results obtained for the BP-BSGS scheme, with no inte
cial transfer terms. Taking= v, with 1 = o =0 (inviscid), cell aspect ratio, AR Ax/
Ay =1.0,andw =0.80, the results in Fig. 14a are obtained. There itis observed that the :
scheme exhibits good damping characteristics at all wave numbers away from the ol
consistent with the observations made above for the 1-D scheme. However, the 2-D sc
remains stable only te = 0.93.

On high aspect ratio grids, as are characteristic of higby boiling heat exchanger
geometries, long wavelength axial modes become poorly damped as Fig. 14b illustr

n

-0.95

0 o, b1

FIG. 14b. 2-D stability of the BP-BSGS scheme. ARu/v =100 » = 0.80.
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FIG.15. Comparison of COMAC and segregated scheme outer loop convergence rates for a two-dimens
bubbly air-water vertical duct flow.

There a grid aspect ratio of 100 is assumeid, taken to be equal to/AR (“well-guided”
flow), andw = 0.80. Though the 2-D scheme remains stable te 0.97, long wavelength
axial modes are very poorly damped. This low axial wave number stiffness is effecti
handled by deploying a coupled block correction strategy, as discussed in [7].

COMAC RESULTS—2-D

In order to demonstrate the validity of the 2-D stability results and the overall effectiven
of the algorithm for realistic multi-dimensional analysis, results of two sample compt
tions performed with COMAC run in two-field, 2-D mode are presented in this section.
first simulation is of laminar air—water bubbly flow in a vertical duct. The liquid Reynol

<o>
1.0
0.9
0.8
0.7F
0.6F
05F
0.4F
0.3F
0.2F
0.1F

090 02 0.4 0.6 0.8 10
XL

1

FIG. 16a. Predicted average volume fraction vs axial coordinate for a two-dimensional boiling turbul
steam-water vertical duct flow.
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FIG. 16b. Outer loop convergence history for a two-dimensional boiling turbulent steam—water vertical c
flow.

number was 2332, and the density ratio was 858. Zero slip and an inlet vapor volume |
tion of 0.10 were specified. The length to height ratio of the geometry was 6.0.xA324
mesh was employed. Figure 15 shows the outer loop convergence history for this cor
tation using COMAC and its segregated algorithm-based predecessor. COMAC conve
to machine zero in approximately 10 iterations, compared to over 100 for the segreg
algorithm.

The second simulation is of turbulent boiling steam—water flow in a vertical duct.
this simulation, subcooled liquid enters a wall-heated vertical duct. Significant boiling
affected through mass transfer models based on wall heating and interfacial thermody
ics. A 64x 32 mesh was employed. Figure 16a shows the predicted average steam vo
fraction vs axial coordinate. Figure 16b shows the outer loop convergence history for
computation using COMAC. Because the Newton method is not, in general, globally ¢
vergent, a finite physical time step is introduced into the discretization for the first f
iterations to maintain non-linear stability. At that point the physical time step is set to inf
ity, the Newton scheme is recovered, and the code exhibits Newton convergence to ma
zero in another five iterations.

CONCLUSION

An implicit method, developed for the solution of the viscous full multi-fluid equation
has been developed. Stability analyses were performed for preconditioned iterative sch
applied to the coupled discrete system of equations which arise in the formulation.

Several conclusions are drawn in the work, including the following: (1) A block syr
metric Gauss—Siedel scheme with block Jacobi preconditioning (BP-BSGS) gives ris
good damping properties for the multi-fluid system. Good damping for the 1-D sche
can be obtained within a relaxation factor range & 9w < 1.5. (2) A minimum level
of exactness must be employed in developing an approximate Newton linearizatior
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the fully coupled system. An exact linearization in the momentum equations affords
benefit to the linear stability of the scheme compared to a “frozen” coefficient lineari
tion, but can significantly improve the non-linear performance of the scheme. (3) In
absence of inter-field transfer terms, the basic multi-fluid scheme exhibits very sinm
stability characteristics to its single-phase analog. Only at very low cell Reynolds nt
bers does the multi-fluid system exhibit deteriorated damping properties compared tc
gle phase. (4) Reynolds number effects are moderate; the limit of infinite cell Reync
numbers marginalizes the stability of the scheme only slightly. (5) Implicit treatment
several interfacial transfer mechanisms investigated (mass transfer, drag, dispersior
virtual mass) can affect the stability of the scheme, but the BP-BSGS scheme anal
retains good damping characteristics for physically reasonable values of these mo«
terms. (6) A multi-fluid Navier—Stokes code which deploys the BP-BSGS scheme
been developed. Comparison of vector and matrix stability verified the correctnes
the vector analyses presented and demonstrated that physical boundary condition
deteriorate the damping characteristics of the scheme. (7) The two-dimensional st
ity characteristics of the scheme are generally consistent with one-dimensional res
with high aspect ratio grids introducing diminished low wave number axial mode dar
ing, as commonly observed in most CFD algorithms. However, the maximum stable
laxation factors for the BP-BSGS scheme drop from 2.00 in 1-D to approximately O
in 2-D.
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